First Total Synthesis of (±)-Abieta-8, 11, 13-trien-7β-ol

Cheng Lu ZHANG, Ping Yan BIE, Xuan Jia PENG, Yi YANG, Xin Fu PAN*

Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: The first total synthesis of (\pm)-abieta-8, 11, 13-trien-7 β -ol (7) was accomplished *via* a strategy of AC \rightarrow ABC, in which the reduction of the ketone 6 with LiAlH₄ gave exclusively the title compound.

Keywords: Total synthesis, (\pm) -abieta-8, 11, 13-trien-7 β -ol, diterpene.

(±)-Abieta-8, 11, 13-trien-7 β -ol (7)¹was a diterpene isolated from the leaves of *J. chinensis kaizuka*². To our knowledge, no total synthetic work has been reported on it. Many of this type diterpenes exhibit significant bioactivities, such as antibacterial activity³, antitumor⁴⁻⁵, and anti HIV⁶. In order to study the further relationship between the structure and bioactivities, we synthesized the title compound. To contrast with our prior work^{7~10}, the synthesis in this work had some differences. First, we changed the method of the introduction of isopropyl group. Second, the catalytic hydrogenation of 3-styryl and 2-propylen in compound **3** was accomplished in one step. This method can be probably applied in the synthesis of analogous compounds.

As shown in Scheme 1, we used α -cyclocitral 1 as A ring starting material and the compound 2 as the C ring synthon.

Condensation of compound 1 with 2 in dry THF in the presence of *n*-BuLi in a stream of argon afforded the desired compound 3 in 73% yield. Partial hydrogenation of 3 in anhydrous ethanol at room temperature over 10% Pd/C gave compound 4 in 98% yield. The reagent BF₃·Et₂O was used in the intramolecular cyclization step (B ring) at room temperature to afford the product 5 that was in *trans* form in 89% yield. The *trans*-configuration of A/B ring junction in 5 was characterized specifically by the upfield signal of the C₄- α -methyl group at 1.0 ppm. According to the literature¹¹, when the A/B ring is in *trans* junction, the C₄- α -methyl group is slightly deshielded by the aromatic ring C, the δ value of C₄- α -methyl group remains within the sphere of magnetic influence of aromatic ring C, the chemical shift of C₄- α -methyl group appears at about 0.40 ppm. Oxidation of compound 5 with CrO₃/HOAc afforded ketone 6 in good yield. Reduction of 6 with LiAlH₄ (THF, 0°C, 2h) gave exclusively the target molecule 7 as a

^{*}E-mail: panxf@lzu.edu.cn

Reagents and conditions: (a) *n*-BuLi, THF, r. t., 1h, 73%; (b) 10% Pd/C, EtOH, r. t., 30 min, 98%; (c) BF₃:Et₂O, CH₂Cl₂, r. t., 24 h, 89 %; (d) CrO₃, HOAc, r. t., 30min, 93%; (e) LiAlH₄, THF, 0°C, 2 h, 96%.

consequence of hydride attack from the less hindered α -face. The axial 7-H of 7 exhibited a double doublet signal (*J*=10, 7 Hz) while the equatorial 7-H showed a triplet (*J*=3 Hz) according to the literature². In conclusion, in the present work, a simple convergent synthetic route has been developed for the discovered diterpenoid.

Acknowledgment

We are grateful to the National Natural Science Foundation of China (No. 29372050) for financial support.

References and Notes

- 1. (±)-Abieta-8, 11, 13-trien-7β-ol: colorless oil. IR(KBr, cm⁻¹): 3398(OH). ¹H NMR (200MHz, CDCl₃, δ_{ppm}): 0.93 (s, H-19), 0.95 (s, H-18), 1.22 (d, *J*=6.9 Hz, H-16, H-17), 1.25 (s, H-20), 2.86 (sept, *J*=6.9 Hz, H-15), 4.79 (dd, *J*=10, 7.2 Hz, H-7), 7.07 (dd, *J*=8.0, 1.8 Hz, H-12), 7.15 (d, *J*=8.0 Hz, H-11), 7.38 (br s, H-14). ¹³C NMR (50MHz, CDCl₃, δ_{ppm}): 19.1 (C-2), 21.5 (C-19), 23.9 (C-16), 24.1 (C-17), 25.3 (C-20), 30.3 (C-6), 33.1 (C-4), 33.1 (C-18), 33.6 (C-15), 38.2 (C-10), 38.7 (C-1), 41.3 (C-3), 49.2 (C-5), 71.3 (C-7), 124.3 (C-12), 125.0 (d, C-11), 125.7 (C-14), 137.7 (C-8), 146.2 (C-13), 147.3 (C-9). MS (EI, *m/z*): 286 (M⁺), 271, 227, 211, 183, 162, 141, 129, 115, 91, 69, 55, 41. Found: C, 83.89; H, 10.20. C₂₀H₃₀O requires C, 83.92; H, 10.49. The above data were consistent with the literature².
- 2. J. M. Fang, C. K. Lee, Y. S. Cheng, *Phytochem.*, **1993**, *33* (5), 1169.
- 3. A. Ulubelen, J. Nat. Prod., 1988, 51 (6), 1178.
- 4. Y. Ikeshiro, I. Mase, Y. Tomita, Phytochem., 1989, 28, 3139.
- 5. G. Haro, H. Kakisawa, Chem. Lett., 1990, 1599.
- 6. V. Turk, M. Renko, J. Nat. Prod., 1993, 56 (8), 1426.
- 7. X. C. Wang, X. F. Pan, Tetrahedron, 1996, 52, 1059.
- 8. Y. H. Gan, X. F. Pan, J. Chem. Research (S), 2000, 130.
- 9. Y. H. Gan, A. P. Li, X. F. Pan, Tetrahedron: Asymmetry, 2000, 11, 781.
- 10. A. P. Li, H. Wang, C. L. Zhang, T. X. Wu, X. F. Pan, Chin. Chem. Lett., 2002, 13 (2), 133.
- 11. F. M. Alfonso, M. L. B. Peter, W. J. Richard, J. Org. Chem., 1965, 30, 713.

Received 17 June, 2002